On nonseparable Banach spaces

Author:
Spiros A. Argyros

Journal:
Trans. Amer. Math. Soc. **270** (1982), 193-216

MSC:
Primary 46B20; Secondary 03E35, 03E50

DOI:
https://doi.org/10.1090/S0002-9947-1982-0642338-2

MathSciNet review:
642338

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Combining combinatorial methods from set theory with the functional structure of certain Banach spaces we get some results on the isomorphic structure of nonseparable Banach spaces. The conclusions of the paper, in conjunction with already known results, give complete answers to problems of the theory of Banach spaces. An interesting point here is that some questions of Banach spaces theory are independent of Z.F.C. So, for example, the answer to a conjecture of Pełczynski that states that the isomorphic embeddability of ${L^1}{\{ - 1, 1\} ^\alpha }$ into ${X^{\ast }}$ implies, for any infinite cardinal $\alpha$, the isomorphic embedding of $l_\alpha ^1$ into $X$, gets the following form: if $\alpha = \omega$, has been proved from Pełczynski; if $\alpha > {\omega ^ + }$, the proof is given in this paper; if $\alpha = {\omega ^ + }$, in ${\text {Z}}{\text {.F}}{\text {.C}}{\text {.}} + {\text {C}}{\text {.H}}{\text {.}}$, an example discovered by Haydon gives a negative answer; if $\alpha = {\omega ^ + }$, in ${\text {Z}}{\text {.F}}{\text {.C}}{\text {.}} + \urcorner {\text {C}}{\text {.H}}{\text {.}} + {\text {M}}{\text {.A}}{\text {.}}$, is also proved in this paper.

- S. Argyros,
*On the dimension of injective Banach spaces*, Proc. Amer. Math. Soc.**78**(1980), no. 2, 267–268. MR**550510**, DOI https://doi.org/10.1090/S0002-9939-1980-0550510-9 - S. Argyros,
*Weak compactness in $L^{1}(\lambda )$ and injective Banach spaces*, Israel J. Math.**37**(1980), no. 1-2, 21–33. MR**599299**, DOI https://doi.org/10.1007/BF02762865
S. Argyros and S. Negrepontis, - W. W. Comfort and S. Negrepontis,
*The theory of ultrafilters*, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 211. MR**0396267** - Leonard E. Dor,
*On projections in $L_{1}$*, Ann. of Math. (2)**102**(1975), no. 3, 463–474. MR**420244**, DOI https://doi.org/10.2307/1971039 - James Hagler,
*On the structure of $S$ and $C(S)$ for $S$ dyadic*, Trans. Amer. Math. Soc.**214**(1975), 415–428. MR**388062**, DOI https://doi.org/10.1090/S0002-9947-1975-0388062-1 - James Hagler and Charles Stegall,
*Banach spaces whose duals contain complemented subspaces isomorphic to $C[0,1]$*, J. Functional Analysis**13**(1973), 233–251. MR**0350381**, DOI https://doi.org/10.1016/0022-1236%2873%2990033-5 - A. Hajnal,
*Proof of a conjecture of S. Ruziewicz*, Fund. Math.**50**(1961/62), 123–128. MR**131986**, DOI https://doi.org/10.4064/fm-50-2-123-128 - Richard Haydon,
*On Banach spaces which contain $l^{1}(\tau )$ and types of measures on compact spaces*, Israel J. Math.**28**(1977), no. 4, 313–324. MR**511799**, DOI https://doi.org/10.1007/BF02760637
---, - W. B. Johnson, H. P. Rosenthal, and M. Zippin,
*On bases, finite dimensional decompositions and weaker structures in Banach spaces*, Israel J. Math.**9**(1971), 488–506. MR**280983**, DOI https://doi.org/10.1007/BF02771464 - A. Pełczyński,
*Projections in certain Banach spaces*, Studia Math.**19**(1960), 209–228. MR**126145**, DOI https://doi.org/10.4064/sm-19-2-209-228
---, - Haskell P. Rosenthal,
*On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measure $\mu $*, Acta Math.**124**(1970), 205–248. MR**257721**, DOI https://doi.org/10.1007/BF02394572 - Haskell P. Rosenthal,
*On relatively disjoint families of measures, with some applications to Banach space theory*, Studia Math.**37**(1970), 13–36. MR**270122**, DOI https://doi.org/10.4064/sm-37-1-13-36 *Handbook of mathematical logic*, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR**457132**
T. W. Starbird, - C. Stegall,
*Banach spaces whose duals contain $l_{1}(\Gamma )$ with applications to the study of dual $L_{1}(\mu )$ spaces*, Trans. Amer. Math. Soc.**176**(1973), 463–477. MR**315404**, DOI https://doi.org/10.1090/S0002-9947-1973-0315404-3

*Universal embeddings of*$l_\alpha ^1$

*into*$C(X)$

*and*${L^\infty }(\mu )$, Colloq. Math. Soc. Janós Bolyai Topology, vol. 23, Budapest, 1978.

*On dual*${L^1}$

*spaces and injective bidual Banach spaces*, Israel J. Math.

**7**(1978), 142-152.

*On Banach spaces containing*${L^1}(\mu )$, Studia Math.

**30**(1968), 231-246.

*Subspaces of*${L^1}$

*containing*${L^1}$, Dissertation, Univ. of California, Berkeley, 1976.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46B20,
03E35,
03E50

Retrieve articles in all journals with MSC: 46B20, 03E35, 03E50

Additional Information

Article copyright:
© Copyright 1982
American Mathematical Society